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Abstract. We develop a linear theory of electron transport for a system of two identical quantum
wires over a wide range of the wire length L, unifying both the ballistic and diffusive transport
regimes. The microscopic model, involving the interaction of electrons with each other and with
bulk acoustical phonons, allows a reduction of the quantum kinetic equation to a set of coupled
equations for the local chemical potentials for forward- and backward-moving electrons in the
wires. As an application of the general solution of these equations, we consider different kinds of
electrical contacts to the double-wire system and calculate the direct resistance, the transresistance,
in the presence of tunnelling and Coulomb drag, and the tunnelling resistance. If L is smaller than
the backscattering length lP , both the tunnelling and the drag lead to a negative transresistance,
while in the diffusive regime (L � lP ) the tunnelling opposes the drag and leads to a positive
transresistance. If L is smaller than the phase-breaking length, the tunnelling leads to interference
oscillations of the resistances that are damped exponentially with L.

1. Introduction

One-dimensional (1D) electron systems, such as occur in semiconductor quantum wires, are at
the forefront of research in modern condensed-matter physics. In submicrometre-long quantum
wires at low temperatures, the electron transport occurs in the ballistic regime [1] and the wire
conductance reaches its fundamental value of G0 = e2/πh̄. On the other hand, in sufficiently
long wires the conductance is limited by scattering processes. If quantum-interference effects
are neglected, as is the case when the inelastic scattering dominates, the conductance is given
by σ/L, where L is the wire length and σ the conductivity described by the Drude expression
σ = e2nτtr/m, where n is the electron density, τtr the transport time, and m the effective mass
of the electron. This regime is referred to as that of diffusive transport.

Modern technology allows one to create various systems comprising two quantum wires
put close to each other so that the tunnelling of electrons between the wires and/or interlayer
electron–electron interaction is important. Both of these effects give rise to coupling between
the electron sub-systems in single wires and in that way modify their electronic properties.
This renders the coupled double-wire systems a subject of interest. In the past few years,
there have been experimental and theoretical studies of 1D–1D tunnelling [2, 3] and electron
transport [4–22] along the wires of such systems. Investigations of the transport are mostly
devoted to interlayer tunnelling in the purely ballistic regime and in connection with the idea
of the electron-wave coupler [4, 5]. On the other hand, there are theoretical papers [18–22]
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describing the momentum transfer between the wires due to interlayer Coulomb interaction
and the corresponding interlayer transresistance (Coulomb drag). Calculations of the Coulomb
drag have been made for both the diffusive [18–20] and the ballistic [21] transport regimes, as
well as for the regime in which the electron sub-systems are described by the Luttinger-liquid
model [22].

Despite this progress, there is a distinct lack of description of the electron transport in
coupled quantum wires. Even if we accept the concept that the electrons are described by
a normal Fermi-liquid model, two important questions arise. The first one is that of how to
describe the electrical properties when both tunnelling and interactions of the electrons (with
each other and with impurities or phonons) are important. The second one is that of how to
bridge the gap between the ballistic and diffusive transport regimes in such a description.

In this paper we present a linear-response theory of electron transport in coupled quantum
wires that gives a reasonable answer to both questions stated above. We consider two
parallel, tunnel-coupled 1D systems of degenerate electron gases adiabatically contacted to
four equilibrium reservoirs, as shown and labelled in figure 1. This general scheme of a four-
terminal device may describe both planar [2, 4, 5, 15] and vertically coupled [3, 9, 12, 17]
double-wire devices. We take into account the interaction of electrons with themselves as
well as that with acoustical phonons. We start from the quantum kinetic equation and finally
transform it to a set of linear differential equations describing the distributions of the local
chemical potentials for the systems of forward- and backward-moving electrons along the
wires. The boundary conditions for such equations are dictated by the Landauer–Büttiker–
Imry theory. This transformation is justified from microscopic calculations, which also give
us expressions for the characteristic times, associated with the interactions involved, that enter
the equations for chemical potentials.

µ1l
µ1r

µ2l
µ2r

Lx

Figure 1. A schematic representation of two coupled quantum wires.

As an application of our transport theory, we analyse in detail different kinds of electrical
contacts to the double-wire system. First we consider the case where the voltage is applied
between the ends of one wire and calculate the ‘direct’ resistance of this wire as it is affected
by the presence of the other one, as well as the transresistance, i.e., the resistance associated
with the voltage induced at the ends of the uncontacted wire. Details about experimental
measurements of the transresistance in such systems can be found in reference [23].

Next we consider the case corresponding to the tunnelling measurements [2], where the
voltage is applied between the wires, and calculate the tunnelling resistance. Several previously
obtained theoretical results for such quantities (some of them are for coupled 2D systems)
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follow from our theory as limiting cases. A brief account of the main results appeared in
reference [24].

The paper is organized as follows. In section 2 we present the microscopic model and
derive the equations for the local chemical potentials in the layers. In section 3 we solve these
equations, apply the results obtained to the calculation of the direct resistance, transresistance,
and tunnelling resistance of the double-wire system, and describe possible transport regimes.
Concluding remarks and a discussion of the approximations made are given in section 4.
The appendix contains detailed microscopic calculations and expressions for the characteristic
times entering the equations for chemical potentials.

2. From quantum kinetic theory to local description

Consider two homogeneous 1D quantum layers of lengthL, labelled left (l) and right (r), along
the x-axis; see figure 1. The quantum kinetic equation for the density matrix ρ̂ reads

∂ρ̂/∂t + (i/h̄)[Ĥ0 + ĤC + Ĥe−ph, ρ̂] = 0. (1)

Here we assume that electrons interact with each other via the Coulomb field ĤC and with
acoustical phonons via Ĥe−ph. Elastic scattering is neglected, i.e., we assume ideal wires. The
unperturbed Hamiltonian Ĥ0 includes both the kinetic and potential energy operators. Below,
we use the basis of the isolated l- and r-layer states Fl(y, z) and Fr(y, z) and assume that only
the lowest level is occupied in each layer. In this basis the potential energy is the matrix

ĥ = (�/2)σ̂z + T σ̂x. (2)

Here σ̂i are the Pauli matrices, � is the level-splitting energy, and T the tunnelling matrix
element characterizing the strength of the tunnel coupling. Such tight-binding description is
often used in applications to two-level systems.

The kinetic equation can be written [25] as one for the Keldysh Green’s function Ĝ−+.
Below, we consider the case where the characteristic spatial scale of the electronic distribution
is large in comparison to the Fermi wavelength πh̄/pF and use the Keldysh matrix Green’s
function in the Wigner representation Ĝ−+

ε,t (p, x), wherep and ε are the momentum and energy

and t the time. Time dependence of Ĝ−+ is not essential in the following, since we study a
time-averaged, steady-state problem. The linear-response theory uses a Green’s function of
the form

Ĝαβ
ε (p, x) = Ĝ(0)αβ

ε (p) + δĜαβ
ε (p, x) (3)

where α and β are + or −. The unperturbed part Ĝ(0)αβ
ε (p) is given by

Ĝ(0)−+
ε (p) = f (ε)[ĜA

ε (p)− ĜR
ε (p)] Ĝ(0)+−

ε (p) = (f (ε)− 1)[ĜA
ε (p)− ĜR

ε (p)]

(4)

Ĝ(0)−−
ε (p) = ĜR

ε (p) + Ĝ(0)−+
ε (p) Ĝ(0)++

ε (p) = −ĜA
ε (p) + Ĝ(0)−+

ε (p) (5)

where f (ε) = [1 + e(ε−µ)/kBTe ] is the equilibrium Fermi distribution function and ĜR,A are the
retarded and advanced Green’s functions which satisfy the equations[

ε − εp − ĥ− )̂R,A
ε (p)

]
ĜR,A

ε (p) = 1. (6)

Here )̂R,A
ε (p) are the self-energy functions.

The linearized kinetic equation reads
h̄

2

{
v̂p,

∂

∂x
δĜ−+

ε (p, x)

}
+ i

[
ĥ, δĜ−+

ε (p, x)
]

− h̄

2

{
∂

∂x
ϕ̂,

∂

∂p
Ĝ(0)−+

ε (p)

}
+ i

[
ϕ̂, Ĝ(0)−+

ε (p)
]

= i δÎ(ε, p, x). (7)
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Here {· · ·} denotes anticommutators, v̂p = P̂lvlp + P̂rvrp is the diagonal matrix of the group
velocities, and P̂l = (1 + σ̂z)/2 and P̂r = (1 − σ̂z)/2 are the projection matrices. In this paper
we consider the case of equal group velocities in the layers, with vlp = vrp = vp = p/m. If a
magnetic field is applied perpendicular to the wire plane though, vlp and vrp become different.
Further, ϕ̂ is the matrix of the self-consistent electrostatic potential arising due to perturbation
of the electron density. In the mean-field (Hartree) approximation this matrix is diagonal.
Finally, the generalized collision integral Î is given by [25]

Î = −
{
)̂−+Ĝ++ + )̂−−Ĝ−+ + Ĝ−+)̂++ + Ĝ−−)̂−+

}
(8)

where all Green’s functions Ĝαβ and self-energy functions )̂αβ have the same arguments ε, p,
and x. This corresponds to a quasiclassical description of the scattering. However, the matrix
structure of Ĝαβ and )̂αβ remains important and equation (7) is not reduced to a classical
Boltzmann equation. Since we consider the interaction of electrons with each other and with
acoustical phonons, the corresponding lowest-order contributions to the self-energy are given
by the diagrams of figure 2. We neglect the exchange part of the Coulomb interaction for the
following reasons. The first-order exchange contributions do not influence the imaginary part
of the self-energy and are not, therefore, essential for the calculation of the collision integral.
The second-order exchange contributions are small as compared to the second-order direct
Coulomb contributions, represented by the diagram of figure 2(b), if the momentum transfer q
is small in comparison with the Fermi momentum. Finally, there are no exchange contributions
to the interlayer Coulomb interaction.

(a) (b)

α  j j’  βp−q p−qα  j j’  β

p’+q

p’

α βj1
j1’

Figure 2. Feynman diagrams describing the contributions of electron–phonon (a) and electron–
electron (b) interaction to the self-energies.

We consider low temperatures and degenerate electrons. We also assume that the Fermi
energy is large in comparison with both the tunnelling matrix element T and the level splitting
�, thereby neglecting the difference between the electron densities in the layers. We sum
equation (7) over the electron momentum p in the regions of positive (+) (or forward) and
negative (−) (or backward) group velocities and introduce the non-equilibrium part ĝε(x) of
the energy distribution function in the following manner:

ĝ±
ε (x) =

∫
±

dp

2π i
|vp| δĜ−+

ε (p, x). (9)

Since δĜ−+ is essentially non-zero only in narrow intervals of energy and momentum near
the equilibrium chemical potential µ and Fermi momentum pF , we can replace |vp| in this
equation by the Fermi velocity vF , common to both layers. The integration in the + and −
regions in equation (7) removes the contributions proportional to the potential matrix ϕ̂(x) and
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we obtain

±vF ∂

∂x
ĝ±
ε (x) +

i

h̄

[
ĥ, ĝ±

ε (x)
]

= δÎ±(ε, x) (10)

where the collision integral

δÎ±(ε, x) = (2πh̄)−1
∫

±
dp |vp| δÎ(ε, p, x)

depends on both ĝ+ and ĝ−, since it accounts for both forward- and backward-scattering
processes. However, when we integrate equation (10) over the energy, the diagonal part
of δÎ±(ε, x) vanishes for forward-scattering contributions, and only the backscattering
contributions remain; see below. In contrast, the forward-scattering contributions for the
non-diagonal part of the collision integral are not eliminated by the energy integration.

The matrix kinetic equation (10) is equivalent to eight scalar equations for the four
components of ĝ+ and the four ones of ĝ−, corresponding to forward- and backward-
propagating electrons, respectively. These equations must be accompanied by boundary
conditions connecting the components of ĝ± with the quasi-equilibrium distribution functions
of the four leads which the quantum wires are contacted to; cf. figure 1. The distribution
functions of the leads are defined by the four chemical potentials µ1l , µ1r , µ2l , and µ2r . If we
assume that the potentials in the contact regions are sufficiently smooth in comparison with the
Fermi wavelength but abrupt enough as compared to the characteristic scale of the electronic
distribution, we can apply equation (10) in the contact region as well. It gives us the conditions
of continuity for all components of ĝ±

ε (x) across the contact regions and we obtain

ĝ+
ε (0) = −∂f (ε)

∂ε
[P̂l δµ1l + P̂r δµ1r ] ĝ−

ε (L) = −∂f (ε)

∂ε
[P̂l δµ2l + P̂r δµ2r ] (11)

with δµ1l = µ1l − µ, etc. The forward- and backward-propagating states are ‘connected’,
respectively, to the leads 1 and 2. The non-diagonal components vanish at the contacts because
the tunnelling is absent outside the region x = [0, L].

The problem described by the matrix equation (10) and the boundary conditions (11) can
be considerably simplified and solved analytically if we assume that both backscattering and
the interlayer tunnelling occur much less frequently than the scattering of electrons inside
the layers and inside the + or − regions. The tunnelling can be made weak if, for example,
the potential barrier between the wires is thick enough. As regards the backscattering, this
condition is often fulfilled at low temperatures for both the electron–electron and electron–
phonon scattering mechanisms. In the first case, the backscattering probability contains a
factor [K0(2pFa/h̄)]2, where K0 is the modified Bessel function and a is the wire width. This
factor is exponentially small for 2pFa/h̄ > 1. The acoustic phonon-assisted backscattering
gives a small contribution in comparison with the electron–electron forward scattering due to
the smallness of the electron–phonon coupling constant. In addition, this backscattering is
suppressed at very low temperatures Te < 2pF s, where s is the sound velocity. If the stated
conditions are fulfilled, the diagonal parts of the energy distribution function of the electrons
have a Fermi-like energy dependence because any quasi-equilibrium Fermi function locally
satisfies a kinetic equation containing the electron–electron and electron–phonon collision
integrals. This means that the diagonal part of ĝ±

ε (x) is given by the following equation:

[ĝ±
ε (x)]jj = −∂f (ε)

∂ε
δµ±

j (x) (12)

where δµ±
j (x) = µ±

j (x) − µ (j = l, r) do not depend on the energy. The quantities
µ±
j (x) have the direct meaning of local chemical potentials for the layers l and r . It

is convenient to introduce also the non-diagonal components of the chemical potentials
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µ±
lr (x) = µ±

u (x) − iµ±
v (x) and µ±

rl(x) = µ±
u (x) + iµ±

v (x), by writing the whole chemical
potential matrix as

δµ̂±(x) =
∫

dε ĝ±
ε (x). (13)

Below we drop the symbol ‘δ’ in δµ̂±(x) and the contact potentials δµ1l,r and δµ2l,r since all
chemical potentials are counted from the same equilibrium value µ.

Substituting equation (12) into equation (10) and integrating the latter over the energy,
we finally obtain eight coupled, first-order differential equations for the eight components
of µ±

k (x):

±dµ±
l /dx + (µ±

l − µ∓
l )(1/lP + 1/lD)− (µ±

r − µ∓
r )/ lD − 2tFµ

±
v = 0 (14)

±dµ±
r /dx + (µ±

r − µ∓
r )(1/lP + 1/lD)− (µ±

l − µ∓
l )/ lD + 2tFµ

±
v = 0 (15)

±dµ±
u /dx + δFµ

±
v + µ±

u / lC = 0 (16)

±dµ±
v /dx − δFµ

±
u + µ±

v / lC + tF (µ
±
l − µ±

r ) = 0. (17)

Here tF = T/h̄vF and δF = �/h̄vF . The boundary conditions for all potentials follow from
equations (11)–(13) and are µ+

l (0) = µ1l , µ
−
l (L) = µ2l , µ+

r (0) = µ1r , µ−
r (L) = µ2r , and

µ+
u,v(0) = µ−

u,v(L) = 0. The characteristic lengths lP , lD , and lC result from the collision

integral δÎ±(ε, x), evaluated to the lowest order with respect to the tunnelling matrix element
T ; see the appendix for details. They are expressed, respectively, through the phonon-assisted
1D transport time [26] τP , the 1D Coulomb-drag time [19, 20] τD , and the phase-breaking
time τC describing the suppression of tunnel coherence, as lP = 2vF τP , lD = 2vF τD , and
lC = vF τC . The transport time τP is common to both layers since we assume that the confining
potentials for the wires l and r are almost identical. The analytical expressions for the τP , τD ,
and τC are given in the appendix. All characteristic lengths are sensitive to the temperature
T and the level splitting �. It is essential that lC , which is controlled by electron–electron
interaction, is always much smaller than lD and lP . On the other hand, depending on the
temperature and level splitting one can have different relations between lD and lP : both cases,
lP � lD and lP � lD , are possible.

Equations (14)–(17) with the stated boundary conditions give us a complete description
of the electrical properties of double quantum-wire systems in a wide range of regimes starting
from the purely ballistic transport regimeL � lC to the diffusive transport regimeL � lP , lD .
The local currents flowing in the layers j = l, r are expressed by

Jj (x) = G0[µ+
j (x)− µ−

j (x)]/e (18)

and the local tunnel currents are proportional to T µ±
v (x).

Below, we present the general solution of equations (14)–(17) and describe two important
cases, that of long systems, with L � lC , and that of short systems with L ∼ lC . To charac-
terize the effects of drag and tunnelling, we then consider different kinds of electrical contact
to the double-wire system. First we consider a typical set-up for the drag measurements,
where the current Jr = Jr(0) = Jr(L) is injected in wire r (‘drive wire’) while no current is
allowed to flow into wire l, Jl(0) = Jl(L) = 0, and calculate the transresistance RTR defined
as RTR = [µ1l − µ2l]/eJr as well as the ‘direct’ resistance R = [µ1r − µ2r ]/eJr . Next, we
turn to the tunnelling measurements [2], where the voltage is applied between the wires. We
consider both the symmetric set-up, when all four ends of the wires are connected to external
sources, with µ1l = µ2l and µ1r = µ2r , and the non-symmetric one, when the voltage is
applied between the ends 1l and 2r while the remaining ends are not contacted, Jr(0) = 0,
Jl(L) = 0. For each of these cases we calculate the tunnelling resistances RT s (symmetric)
and RTn (non-symmetric). Both of them can be defined as [µ1l − µ2r ]/eJT , where JT is the
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total current injected. JT is equal to 2Jl(0) and Jl(0) for the symmetric and non-symmetric
contacts, respectively.

3. Results

Since equations (14)–(17) are linear, their general solution is easily obtained as

2µ+
l,r (x) = (1 + L/lP )

−1 [(µ1l + µ1r )(1 + (L− x)/ lP ) + (µ2l + µ2r )x/ lP ]

±
∑
i

(A+
i eλix + B+

i e−λix) (19)

2µ−
l,r (x) = (1 + L/lP )

−1 [(µ1l + µ1r )(L− x)/ lP + (µ2l + µ2r )(1 + x/lP )]

±
∑
i

(A−
i eλix + B−

i e−λix) (20)

µ±
v (x) =

∑
i

(C±
i eλix + D±

i e−λix) (21)

µ±
u (x) = −

∑
i

(
δF

±λi + l−1
C

C±
i eλix +

δF

∓λi + l−1
C

D±
i e−λix

)
. (22)

Here λi = √
yi and y = yi are the solutions of the cubic equation

y3 − 2y2[l−2
C − δ2

F − 4t2
F ] + y[l−4

C + (δ2
F + 4t2

F )
2 − 8(tF / lC)

2 + 2(δF / lC)
2 + 8t2

F /lCl1]

− 4t2
F [4(tF / lC)

2 + (2/lCl1)(l
−2
C + δ2

F )] = 0 (23)

where l−1
1 = l−1

P + 2l−1
D . The coefficients A±

i , B±
i , C±

i , and D±
i are to be found from equations

(14)–(17) and the relevant boundary conditions. Below we use the property lC � lP , lD and
the condition of weak tunnel coupling tF � l−1

C to simplify this procedure. Then the three
roots of equation (23) are easily obtained as

λ1 = λ � 2(1/l2T + 1/lT l1)
1/2 λ2,3 = λ± � 1/lC ± iδF (24)

where we introduced the tunnelling length lT = vF τT . The tunnelling time τT , which contains
a resonance dependence on the level splitting, is defined by

τ−1
T = τ−1

C

2T 2

�2 + (h̄/τC)2
. (25)

The root λ describes long-scale variations of the chemical potentials while λ± corresponds to
short-scale variations. Accordingly, we consider the regimes that follow.

3.1. Long wires, L � lC

This length range comprises the region from the ‘pseudo-ballistic’ (lC � L � lP , lD) to the
diffusive (L � lP ) regimes. All solutions containing λ± exist only in short regions in the
vicinity of the contacts. They are evanescent inside the wire region and not essential in the
calculation of the currents. Considering only the solutions involving λ, we find

2µ+
l,r (x) = (1 + L/lP )

−1 [(µ1l + µ1r )(1 + (L− x)/ lP ) + (µ2l + µ2r )x/ lP ]

± (µ1l − µ1r )P (L− x)/P (L)± (µ2l − µ2r ) sinh λx/P (L) (26)

2µ−
l,r (x) = (1 + L/lP )

−1 [(µ1l + µ1r )(L− x)/ lP + (µ2l + µ2r )(1 + x/lP )]

± (µ1l − µ1r ) sinh λ(L− x)/P (L)± (µ2l − µ2r )P (x)/P (L) (27)

where P(x) = (1 + 2l1/lT ) sinh λx +λl1 cosh λx. The same expressions can be obtained from
the four coupled balance equations compactly presented as

±dµ±
j /dx + (µ±

j − µ∓
j )(1/lP + 1/lD)− (µ±

j ′ − µ∓
j ′)/ lD + (µ±

j − µ±
j ′)/ lT = 0 (28)
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where j = l, r and j ′ �= j . These equations follow from equations (14)–(17) in the limit
L � lC , when one can neglect the derivatives dµ±

u,v/dx in comparison to µ±
u,v/ lC . With

equations (26) and (27) we obtain

R = πh̄

2e2

[
2 + L/lP + (1 + lT / l1)

1/2 tanh(λL/2)
]

(29)

RTR = πh̄

2e2

[
L/lP − (1 + lT / l1)

1/2 tanh(λL/2)
]
. (30)

For L � lP , lT we have R � πh̄/e2 = G−1
0 , while the transresistance is given by

RTR � −(πh̄/e2)L[1/lD + 1/2lT ]. As seen, RTR is small, always negative, and proportional
to the wire length L multiplied by a sum of drag and tunnelling rates. If one neglects
tunnelling, the resulting expression for RTR , with τD given by equation (A.11), describes
the Coulomb drag in the ballistic regime previously investigated [21] by Gurevich et al. When
L increases and the electron transport becomes diffusive (L � lP ), we obtain, for λL/2 � 1,
R � (πh̄/e2)L[1/lP +1/lD]. This resistance, if one omits the drag contribution, is expressed in
terms of the usual Drude conductivity σ = L/R = e2lP /πh̄ = e2nτP /m. The corresponding
transresistance is

RTR = −πh̄

e2
(L/lD)

[
1 − (L/L0)

2
]

L0 = (6l2P lT / lD)
1/2. (31)

Expressing lD and lT through the drag transresistivity πh̄/e2lD and the tunnelling conductance
GT = e2ρ1D/τT = 2e2/πh̄lT , where ρ1D is the 1D density of states at the Fermi level, one
can see that equation (31) formally coincides with that obtained in reference [27], where a
competition of drag and tunnelling effects was investigated for double quantum-well systems.
For λL ∼ 1, the transresistance is large and comparable to the direct resistance, because a
considerable fraction of the current penetrates the l layer due to tunnelling. This regime for
double quantum wells has been investigated both experimentally [28] and theoretically [29].
If one neglects the drag and assumes the diffusive regime (L � lP ) with weak tunnelling
(lP � lT ), equations (29) and (30) describe the results obtained in reference [29]. For λL � 1
we have RTR = R = (πh̄/e2lP )(L/2) = L/2σ . This is the case when the current, though
injected only in one layer, is equally distributed among the layers due to tunnelling.

Figure 3 shows the length dependence of the transresistance calculated for different relative
contributions of the Coulomb drag and tunnelling. The transresistance is negative for small
L but always changes its sign and becomes positive as L increases and the backscattering
occurs more often (see also equation (31)). This behaviour can be explained with the help of
the balance equation (28), which shows that the tunnelling tends to decrease the difference
betweenµ±

l andµ±
r while the backscattering tends to decrease the difference betweenµ+

l,r and
µ−
l,r . Thus, forµ+

l (0) = µ−
l (0) andµ+

l (L) = µ−
l (L) the change ofµ+

l (µ−
l ), with x, is opposite

to that ofµ+
r (µ−

r ) at smallL and becomes the same as that ofµ+
r (µ−

r ) asL increases, leading to
the change ofRTR = [µ±

l (0)−µ±
l (L)]/eJr from negative to positive. This transition occurs at

smaller L/lP if the tunnelling is stronger (larger lP / lT ) and the drag weaker (smaller lP / lD).
Although lT is normally longer than lP , the opposite condition can also be realized.

A particularly interesting transport regime, corresponding to long quantum wires without
backscattering, occurs in tunnel-coupled magnetic edge states [30, 31], since an edge state
represents a 1D system where the electrons can move only in one direction. Assuming
1/lP = 1/lD = 0 in equations (29) and (30), we obtain the result of reference [31] in
the form

R = πh̄

e2
[1 + (1/2) tanh(L/lT )] RTR = − πh̄

2e2
tanh(L/lT ). (32)
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Figure 3. Transresistance RTR as a function of the wire length L. The solid curves correspond
to lP / lD = 0.1 (weaker drag) and the dashed ones to lP / lD = 1 (stronger drag). Each curve is
marked by the value of lP / lT .

Consider now the behaviour of the tunnelling resistances. With equations (26) and (27)
we obtain

RT s = πh̄

2e2

[
1 + (1 + lT / l1)

1/2 coth(λL/2)
]

(33)

and

RTn = πh̄

2e2

[
2 + L/lP + (1 + lT / l1)

1/2 coth(λL/2)
]

(34)

for symmetric and non-symmetric contacts, respectively. For conditions λL/2 � 1 we have
RT s � RTn � (πh̄/2e2)(lT /L), i.e., the tunnelling resistances depend only on the ratio of the
tunnelling length to the wire length. This is because the regime of λL/2 � 1 corresponds
to weak tunnelling and the chemical potentials µ±

l (x) and µ±
r (x) are close to µ1l and µ2r ,

respectively. With the use of the tunnelling conductance GT (see above) one can rewrite the
expression for the tunnelling resistances in a more transparent way: RT s � RTn � (GT L)

−1.
For λL/2 ∼ 1, when the coordinate dependence of the chemical potentials in the layers is
important, RTn is different from RT s and both of them depend on the scattering length lP . The
drag effect is not so important as for the transresistance: the tunnelling resistances depend on
lD only if lD is comparable to or smaller than both lP and lT .

Figure 4 shows the length dependence of the tunnelling resistances RT s and RTn, as given
by equations (33) and (34), for several different values of the ratio lP / lT describing the strength
of the tunnelling with respect to the backscattering. The drag effect is neglected, 1/lD = 0.
As the wire length becomes larger than the backscattering length, the 1/L decrease of the
tunnelling resistance changes to either an L-independent behaviour (for RT s) or to a linear
increase (for RTn). In the first case the dependence on L disappears because all tunnelling
occurs near the ends. In contrast, for non-symmetric contacts the resistance RTn is determined
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Figure 4. Tunnelling resistances for symmetric (solid) and non-symmetric (dashed) set-ups as a
function of the wire length L, at 1/lD = 0. Each curve is marked by the value of lP / lT . The inset
shows the currents (arrows) injected in and coming out of the wires (broad lines) for both cases.

by the Ohmic resistance of the wires instead of the tunnelling effects, and increases linearly with
L. A similar effect, in applications to coupled quantum wells, is discussed in reference [29].

3.2. Short wires, L � lP , lD

This length range comprises the region from the purely ballistic (L � lC) to the ‘pseudo-
ballistic’ (lC � L � lP , lD) regimes. Since the electrons pass along the wires almost without
backscattering, R is close to πh̄/e2, and RTR is small. However, for L ∼ lC an electron
tunnelling between the layers does not lose its phase memory completely and tunnel coherence
effects can manifest themselves on such short lengths giving additional contributions to the
transresistance RTR and the tunnelling resistances RT s and RTn; accordingly the expressions
for these quantities obtained in the previous subsection for L � lP , lD should be modified.

A convenient analytical approach to the problem in this regime is to solve equations
(14)–(17) by iterations taking µ+

l,r (x) = µ1l,r , µ
−
l,r (x) = µ2l,r , and µ±

u,v(x) = 0 as an initial
approximation. Another way is to use equations (19)–(22) directly. We obtain

2µ+
l,r (x) = (µ1l + µ1r )(1 − x/lP ) + (µ2l + µ2r )x/ lP

± (µ1l − µ1r ) [1 − x/l1 − 2x/lT + 2(lC/ lT )9(x)] ± (µ2l − µ2r )x/ l1 (35)

2µ−
l,r (L− x) = (µ2l + µ2r )(1 − x/lP ) + (µ1l + µ1r )x/ lP

± (µ2l − µ2r ) [1 − x/l1 − 2x/lT + 2(lC/ lT )9(x)] ± (µ1l − µ1r )x/ l1 (36)

where

9(x) = [1/(l−2
C + δ2

F )]
[
2(δF / lC)e

−x/lC sin(δF x) + (l−2
C − δ2

F )(1 − e−x/lC cos(δF x))
]

(37)

is an oscillating function of the coordinate x and δF = �/h̄vF . Now R and RTR are given,
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respectively, by

R = h̄π

e2
[1 + L/lP + L/lD + L/2lT − (lC/2lT )9(L)] (38)

and

RTR = h̄π

e2
[−L/lD − L/2lT + (lC/2lT )9(L)] . (39)

The contribution to RTR coming from the term proportional to 9(L) is not small for L ∼ lC .
It describes oscillations damped due to the factor exp(−L/lC). The periodic behaviour can be
described as a result of the interference of electron waves of the left and right layers along the
length L: due to a finite level splitting �, these waves have different phase velocities.

Similar interference effects occur in the tunnelling resistances:

RT s � RTa � h̄π

2e2
(lT /L) [1 − (lC/L)9(L)]

−1 . (40)

From equation (37) for9(L)we see that both the transresistance and the tunnelling resistances,
being functions of �L/h̄vF , oscillate with level separation �. The oscillations are damped
when the wire length L exceeds lC , so the tunnel coherence over the wire length is suppressed.

Changing � by applying a voltage across the wires would lead to oscillations of R, RTR ,
RT s , and RTn. Another way to change � is to apply a magnetic field B perpendicular to the
plane of the wires [15, 16]. For sufficiently weak B the results presented so far still hold with
the phase δFL having an additional contribution 2πφ/φ0, where φ0 = h/e is the magnetic flux
quantum and φ = BwL the flux enclosed by the area between the wires. Though the double-
wire system does not form a closed current loop, this should lead to Aharonov–Bohm-type
oscillations in the resistances defined by equations (38)–(40).

In very short wires, with L � lC, δ
−1
F , equations (39) and (40) become

RTR = −πh̄

e2
(L/lD + L2t2

F /2) RT s = RTn = πh̄

2e2
L−2t−2

F . (41)

In this regime only a small fraction of the electronic wave packet is coherently transmitted from
one wire to another. The tunnelling contribution to RTR follows an L2-dependence, instead of
the linear dependence occurring for lC � L � lP , lD , when the tunnelling is non-coherent.
The length dependence of the tunnelling resistance follows an L−2-law.

In the investigation of the purely ballistic regime (L � lC) we can neglect the collision
integral in equation (10) and need not make the assumption about the smallness of the tunnelling
matrix element which was essential for evaluation of the scattering-induced contributions
in equations (14)–(17). The electron transport in coupled quantum wires in this regime is
pertinent to the problem of electron-wave directional couplers. Theoretical studies of this
problem [4–14], although rather extensive, included only a quantum mechanical calculation
of the electronic transmission. Below, we show how the essential results of these studies can
be obtained in a simple way from the quantum kinetic analysis. Integrating equation (10),
with δÎ±(ε, x) = 0, over the energy and taking equation (13) into account, we find that the
distribution of the chemical potentials is again described by equations (14)–(17) without the
terms containing the scattering lengths lC , lP , and lD . Since there is no backscattering, the
solutions for µ+

l,r and µ−
l,r are decoupled:

µ+
l,r (x) = µ1l,r ∓ (µ1l − µ1r )r sin2(�T x/2h̄vF ) (42)

µ−
l,r (x) = µ2l,r ∓ (µ2l − µ2r )r sin2(�T (L− x)/2h̄vF ). (43)

Here �T = (�2 + 4T 2)1/2 and r = 4T 2/�2
T . Equations (42) and (43) describe oscillations

of the electronic wave packets between the layers due to coherent tunnelling. A complete
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transfer of the wave packet can be achieved for � = 0. One can calculate the resistance and
transresistance as

R = πh̄

e2
[1 − (r/2) sin2 ψ]/[1 − r sin2 ψ] (44)

RTR = − πh̄

2e2
r sin2 ψ/[1 − r sin2 ψ] (45)

and the tunnelling resistances as

RT s = RTn − πh̄

2e2
= πh̄

2e2
r−1 sin−2 ψ. (46)

Here ψ = �TL/2h̄vF . The oscillations of these quantities occur in a way similar to the one
described by equations (38)–(40): δFL coincides with 2ψ if one replaces � by �T . However,
since the tunnel coupling is strong, the oscillations described by equations (44)–(46) have
large amplitudes. In particular, when � is small (r � 1), all the quantities given by equations
(44)–(46) show giant oscillations with amplitude large in comparison to G−1

0 .

4. Conclusions

In this paper we carried out a theoretical study of electron transport in parallel 1D layers coupled
by tunnelling and Coulomb interaction and contacted, at their ends, to quasi-equilibrium
reservoirs. A linear-response, steady-state regime has been investigated, and the wires were
assumed to be ideal, i.e., without defects and, therefore, the elastic scattering of electrons by
them was neglected. As the most important result of our study, we found that a full quantum
kinetic description of the problem is reduced, with physically reasonable assumptions, to a
set of linear, first-order differential equations describing the distribution of local chemical
potentials for forward- and backward-moving electrons. The boundary conditions for the
chemical potentials are determined by the potentials of the reservoirs controlled by applied
voltages. The solution of this set was obtained analytically and allowed us to describe the local
currents flowing in each layer from the pure ballistic regime, when the electrons do not suffer
any scattering along the wires, to the diffusive regime, when the electrons experience many
backscattering events during the transport.

In particular, we applied our approach to the description of the resistanceR, transresistance
RTR , and tunnelling resistances RT s and RTn of double quantum wires. The most important
result is that RTR , which is caused by both tunnelling and Coulomb-drag effects, depends on
the wire length L non-monotonically and always changes its sign as L increases, because in
shorter wires, when backscattering is rare, the tunnelling, as well as the drag, leads to a negative
RTR , while in longer wires, when the transport becomes diffusive, the tunnelling leads to a
positive RTR , in a way similar to that for coupled two-dimensional (2D) systems [28, 29], and
overcomes the drag as the length L increases. This sign inversion is qualitatively understood
from an analysis of the balance equation (28) and is mathematically described by equation (30).
In the diffusive limit and for lT � lP , equations (29) and (30) formally coincide with those
obtained previously [27, 29] for coupled 2D systems. Besides, some recent studies of transport
phenomena in coupled 1D layers, namely transport without backscattering in tunnel-coupled
edge states [30, 31] and Coulomb drag between quantum wires in the ballistic regime [21],
constitute limiting cases of the more general results given by equations (29) and (30).

One should stress the importance of the phase-breaking processes that suppress the tunnel
coherence. In our model, i.e., without elastic scattering, these processes are proved to be
much more frequent than the backscattering processes. This allowed us to distinguish two
transport regimes: the pure ballistic regime, without any scattering, and the pseudo-ballistic
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one, without backscattering but with substantial forward scattering due to electron–electron
interaction, and with suppressed coherence. If one considers just a single wire, there is no
difference between these regimes as regards the electrical properties: the resistance is equal to
G−1

0 in both cases. However, the electrical properties of a tunnel-coupled double-wire system
behave differently as one passes from one regime to another, because the contribution of the
tunnelling to the electrical properties becomes different. In the ballistic regime, as well as in
the transition region between the two regimes (L ∼ lC), all calculated resistances oscillate
with L and with the level-splitting energy � due to interference of the electron waves. One
can vary the level-splitting energy by applying either a transverse voltage across the wires or
a magnetic field perpendicular to the wire plane. In the latter case the oscillations show an
Aharonov–Bohm periodicity associated with the magnetic flux penetrating through the area
Lw between the wires. The oscillations become exponentially damped as the ratio L/lC
increases. If the tunnel coupling is strong, the oscillations have large amplitudes, which, from
a theoretical point of view, can be much larger than the resistance quantum G−1

0 . So far the
experimentally observed [9, 12] resistance oscillations in tunnel-coupled ballistic quantum
wires have been of small (∼0.5 k=) amplitude. This is not surprising because there are
many factors which compete against the tunnel coherence. Apart from inelastic scattering
considered in this paper, there are elastic scattering and long-scale inhomogeneities of the
wires which would lead to a coordinate dependence of the level splitting �. If these variations
of � were larger than the tunnelling matrix element, the coherence would be considerably
suppressed.

We now discuss the approximations made in this paper. The main approximation is the
neglect of elastic scattering. Since this scattering tends to be dominant at low temperatures, the
presence of impurities in the 1D channels will considerably modify the transport. The elastic
scattering will lead to an increase of backscattering and interference between the forward-
and backward-moving electron waves. As a consequence, R, RTR , RT s , and RTn will depend
on the spatial positions of the impurities in the channels and the expressions obtained in this
paper will not be valid. A further development of the transport theory for tunnel-coupled
wires in the presence of elastic scattering is therefore desirable. On the other hand, advances
in the technology of nanostructures, in particular selective doping, can make it possible to
achieve structures where the elastic scattering in 1D channels is minimized for wire lengths
smaller than a few microns which is the current standard of the impurity mean free path at low
temperatures.

Another approximation concerns the transition from the quantum kinetic equation (1)
to the semi-classical description given by equation (7). It is valid when the spatial scale of
the electronic distribution is large in comparison to the Fermi wavelength πh̄/pF . We have
seen that this scale is determined either by λ, given by equation (24) for long wires, or by
λ±, for short wires. In the case of strong tunnel coupling the characteristic scale is given by
h̄vF /�T . Therefore, the necessary requirement is fulfilled if the tunnelling matrix element
T , level splitting �, and the energy h̄/τC , associated with the smallest scattering time τC , are
small in comparison to the Fermi energy. These conditions have been assumed throughout
the paper. This also allowed us to neglect the difference between the electron densities in the
layers and characterize the electrons in different layers by the same Fermi velocity |vp| � vF .

The assumption about the adiabatic connection of the wires to the leads, which allowed
us to neglect elastic scattering of electrons near the ends of the wires, implies that the Fermi
wavelength πh̄/pF must be small in comparison to the contact lengths, i.e., to the lengths of
transition from the leads to the wires. On the other hand, the oscillations associated with the
tunnel coherence, cf. section 3.2, can be seen if the contact lengths are smaller than both lC
and h̄vF /�T . In principle, both requirements can be fulfilled.
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The next approximation, which allowed us to solve the kinetic equation analytically in the
whole range of regimes from ballistic to diffusive, is equivalent to the following statement. In
each layer the forward- and backward-moving electrons can be described as weakly coupled
sub-systems characterized by their own local chemical potentials. This statement is obvious
for the case of pure ballistic or pseudo-ballistic transport, when these potentials are merely
dictated by the reservoirs (leads) and do not change with coordinate x. When the backscattering
becomes important, this statement is still true if we assume that the forward-scattering events
are much more frequent than the backscattering and tunnelling events. For example, it is
always true for magnetic edge states, where one can completely neglect backscattering, and
the introduction of local chemical potentials (see reference [31]) is well justified. In our case, a
consideration of the electron–electron collision integral allowed us to estimate the characteristic
time of the Coulomb-assisted forward scattering, and we find that it is of the order of τC , which
is small in comparison with both backscattering times τP and τD . Thus, the electron–electron
interaction provides an effective mechanism for forward scattering and can maintain quasi-
equilibrium Fermi distribution functions for forward- and backward-moving electron sub-
systems. However, these conditions may be violated when the conducting channels contain
impurities with short-range potentials and the elastic backscattering becomes important.

Our evaluation of the characteristic scattering times from the collision integral has
employed only the lowest-order essential contributions of the electron–phonon and electron–
electron interactions, given by the diagrams of figure 2 and leading to collision integrals with
scattering amplitudes in the Born approximation. While it is normally [32] good for electron–
phonon interaction due to the weakness of the coupling constant, a rigorous evaluation of
the electron–electron part requires also a consideration of higher-order contributions, given
by more complex diagrams, because the ratio of the Bohr energy to the Fermi energy εF ,
which is the parameter of the perturbation expansion for the Coulomb interaction, is not
small. Nevertheless, using the Born approximation in the evaluation of the drag time is still
reasonable if the momentum 2pF transferred in backscattering is large and the electron–
electron backscattering probability is small. As regards τC , it is determined by forward-
scattering processes with small momentum transfer and the Born approximation is not well
justified [33]. On the other hand, our theory leads to a non-divergent expression (A.14) for
τC and gives, for typical parameters of the electron system, physically reasonable values. We
recall that in our theory both kBTe and � are much smaller than εF . Therefore, one may
expect equation (A.14) to provide a correct order-of-magnitude estimate of the time taken by
the phase-breaking process caused by electron–electron interaction.

Finally, we stress that the results obtained in this paper hold for a normal Fermi-liquid
state of the electron system. If the electrons in the wires are in the Luttinger-liquid state [34],
these results have to be reconsidered.
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Appendix

Below, we give a microscopic calculation of the characteristic times τP , τD , and τC . The
coordinate index x in the Green’s functions and self-energies is omitted and h̄ is set equal to 1.
The normalization lengths are also set equal to 1. The electron–phonon self-energies given by
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the diagrams shown in figure 2(a) are explicitly expressed as

)
αβ

jj ′,ε(p) = i
∑
Q

∫
dω

2π
G

αβ

jj ′,ε−ω(p − q)D
αβ

jj ′(ω,Q)M
e−ph
jj (Q)M

e−ph
j ′j ′ (−Q) (A.1)

where the unperturbed Green’s functions of phonons D−+ and D+− (we do not need D−− and
D++ in the following) are given as

iD∓±
jj ′ (ω,Q) = 2π

[
NQδ(ω ∓ sQ) + (1 + NQ)δ(ω ± sQ)

]
(A.2)

and the matrix elements of the electron–phonon interaction are

M
e−ph
jj (Q) = i

√
E2

1Q/2ρsJ e−ph
j (qy, qz)

J
e−ph
j (qy, qz) =

∫ ∫
dy dz F 2

j (y, z)e
iqyy+iqzz.

(A.3)

We use the expression sQ for the phonon energy, where Q = |Q|, Q = (q, qy, qz) is the
phonon wave vector, and s is the velocity of sound. Further, NQ = 1/[exp(sQ/kBTe)− 1] is
the Planck distribution function, ρ is the material density, and E1 is the deformation potential
constant.

The electron–electron self-energies given by the diagrams shown in figure 2(b) are
expressed as

)
αβ

jj ′ε(p) = 2(−1)l
∑
j1j

′
1

∑
p′,q

Me−e
jj1

(q)Me−e
j ′j ′

1
(−q)

×
∫ ∫

dω dε′

(2π)2
G

αβ

jj ′,ε−ω(p − q)G
βα

j ′
1j1,ε′(p

′)Gαβ

j1j
′
1,ε

′+ω(p
′ + q) (A.4)

where l = 0 for α = β and l = 1 for α �= β; the factor of 2 comes from the spin summation
in the ‘loop’. Here

Me−e
jj ′ (q) = (2e2/ε)

∫ ∫ ∫ ∫
dy dy ′ dz dz′ K0(|q||r − r′|)F 2

j (y, z)F
2
j ′(y

′, z′) (A.5)

are the matrix elements for electron–electron interaction, ε is the dielectric constant, K0 is the
modified Bessel function, and |r − r′| = [(y − y ′)2 + (z − z′)2]1/2.

For the evaluation of the collision integral we use equations (3)–(6) and express the non-
equilibrium part of the matrix Green’s functions according to (see also equation (9))

δĜαβ
ε (±|p|) = ĝ±

ε Ĝ
A
ε (p)− ĜR

ε (p)ĝ
±
ε . (A.6)

The collision integrals are evaluated below assuming weak tunnelling, when the non-
diagonal contributions of ĜR,A

ε (p) are neglected. This approximation is valid when the
tunnelling matrix element T is small in comparison to the imaginary part of the self-energies
and when the level splitting |�| is small in comparison to the Fermi energy. Both requirements
are assumed fulfilled. Then the components [ĝ±

ε ]jj ′ enter only in the corresponding parts
δ[Î (ε)]jj ′ of the collision integral.

Now we calculate the diagonal parts for the electron–phonon scattering contribution to
the collision integral. Taking the self-energy given by equations (A.1)–(A.3) we find∫

dε δ[Î e−ph+ (ε)]jj = −(µ+
j − µ−

j )/2τPj

where j = l, r . The phonon-assisted transport time is given by

τ−1
Pj = E2

1

ρsTe

∑
qy ,qz

|J e−ph
j (qy, qz)|2

∑
p,q(p>0,p−q<0)

vpQ

∫
dε

[f (ε)− f (ε − sQ)]

4 sinh2(sQ/2Te)

× [
Gc

jj,ε−sQ(p)G
c
jj,ε(p − q) + Gc

jj,ε(p)G
c
jj,ε−sQ(p − q)

]
(A.7)
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where we defined Gc = GA − GR . For further evaluation of τPj we use the free-particle
(unperturbed) Green’s functions, i.e.,

G
R,A
ll,ε (p) = [ε −�/2 − p2/2m± i0]−1 GR,A

rr,ε (p) = [ε + �/2 − p2/2m± i0]−1

and obtain

τ−1
Pj = E2

1

ρskBTe

∑
qy ,qz

|J e−ph
j (qy, qz)|2

×
∫ ∞

−∞
dq1

Q[f (µ + vF q1/2 − sQ/2)− f (µ + vF q1/2 + sQ/2)]

4 sinh2(sQ/2kBTe)
(A.8)

where q1 = q − 2pF is a small variable. In the limit kBTe � ms2 the integral over q1 is
easily calculated. In addition, if kBTe � s[(π/a)2 + (2pF )2]1/2, where a is the wire width,
the scattering becomes quasi-elastic, and equation (A.8) is reduced to a known [26] result:

τ−1
Pj = 2E2

1kBTe

ρs2vF

∫ ∫
dy dz F 4

j (y, z). (A.9)

Since we assume that the confining potentials for the layers are almost identical, the difference
between τP l and τPr is neglected: τP l = τP l = τP . A numerical estimation, using equation
(A.9) and GaAs material parameters, gives τ−1

P ∼ 10−2 kBTe.
The electron–electron scattering contribution to the diagonal parts of the collision integrals

gives the Coulomb-drag terms:∫
dε δ[Î e−e± (ε)]jj = −(µ±

j − µ∓
j )/2τD + (µ±

j ′ − µ∓
j ′)/2τD

where j ′ �= j . The drag time is given by

τ−1
D = 4

kBTe

∑
p,p′,q

|Me−e
lr (q)|2vp

∫ ∫ ∫
dε dε′ dω

(2π)2
Gc

ll,ε(p)G
c
ll,ε−ω(p − q)

× Gc
rr,ε′(p

′)Gc
rr,ε′+ω(p

′ + q)
[f (ε − ω)− f (ε)][f (ε′)− f (ε′ + ω)]

4 sinh2(ω/2kBTe)
. (A.10)

The sum here must be evaluated for p > 0, p−q < 0, p′ < 0, and p′ +q > 0. The evaluation
of equation (A.10) using the free-particle Green’s functions gives a simple result

τ−1
D = kBTe

πv2
F

|Me−e
lr (2pF )|2 (�/2kBTe)2

sinh2(�/2kBTe)
. (A.11)

One can estimate Me−e
lr (2pF ) as (2e2/ε)K0(2pFw), where w is the distance between the

centres of the wires. If 2pFw � 1, which is easily achieved for w ∼ 30 nm, K0(2pFw) is
exponentially small.

Finally, we calculate the electron–electron part of the non-diagonal components of the
collision integral. Since the main contribution to it comes from the forward-scattering processes
(|q| � pF ), only such processes are considered below. The integral of [Î e−e± (ε)]jj ′ (j �= j ′)
over the energy ε can be reduced to a sum of three terms characterized by three different
statistical factors:∫

dε δ[Î e−e± (ε)]jj ′ = −2
∫

dε [g±
ε ]jj ′

∑
p,p′,q(p>0,p−q>0)

vp

×
∫ ∫

dε′ dω

(2π)2

{
(EARAR

j ′j + ERARA
jj ′ )[f (ε′)[1 − f (ε′ + ω)]

+ f (ε − ω)[f (ε′ + ω)− f (ε′)]] + (EARRA
j ′j + ERAAR

jj ′ )f (ε′ + ω)[1 − f (ε′)]

+ (EARRA
j ′j ′ + ERAAR

jj )f (ε − ω)[f (ε′ + ω)− f (ε′)]
}
. (A.12)
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In equation (A.12) we used the abbreviations

E
αβγ δ

jj ′ = Gα
jj,ε(p)G

β

j ′j ′,ε−ω(p − q)
∑
i

G
γ

ii,ε′(p
′)Gδ

ii,ε′+ω(p
′ + q)

×
[
(Me−e

j ′i (q))
2 −Me−e

ji (q)Me−e
j ′i (q)

]
(A.13)

and neglected the terms with α = β and γ = δ because they vanish upon carrying out the
summations over p and p′, respectively. Since [g±

ε ]lr = [g±
ε ]∗rl = g±

u,ε − ig±
v,ε, one can see that∫

dε δ[Î e−e± (ε)]jj ′ =
∫

dε δ[Î e−e± (ε)]∗j ′j .

Calculating the integrals in the expression (A.12) within the approximation of the free-
particle Green’s functions, we find that the third term on the right-hand side of equation (A.12)
vanishes. The first term diverges for � = 0 but it is close to zero for � �= 0 and can be
neglected in the following. In contrast, the second term gives a contribution, which can be
represented, on account of equation (13), as∫

dε δ[Î e−e± (ε)]jj ′ = −µ±
jj ′/τC.

The ‘non-diagonal’ relaxation time τC (we take into account only its real part) is given by

τ−1
C = e4S2�

2πε2v2
F

coth
�

4kBTe
(A.14)

where

S = −
∫ ∫ ∫ ∫

dy dy ′ dz dz′ ln|r − r′|F 2
l (y, z)[F

2
l (y

′, z′)− F 2
r (y

′, z′)]. (A.15)

In the calculation we took into account thatMe−e
ll (q) � Me−e

rr (q) andqa � 1. The last property
allowed us to use the approximation K0(x) � −[C + ln(x/2)], where C is Euler’s constant;
we found Me−e

ll (q)−Me−e
lr (q) � (2e2/ε)S. The overlap integral S can be approximated, to a

good accuracy, by ln(w/a).
If� � 4kBTe, the relaxation rate τ−1

C given by equation (A.14) is temperature independent
and proportional to |�|. For � � 4kBTe, τ

−1
C is proportional to Te. A comparison of equation

(A.11) and equation (A.14) shows that τC is always much smaller than τD , since τC is controlled
by forward-scattering processes and does not exhibit the smallness associated with the factor
[K0(2pFw)]2. A numerical estimation also shows that τC � τP , because of the weakness of
the electron coupling to acoustical phonons. For this reason we neglected the contribution of
electron–phonon scattering to the non-diagonal part of the collision integral.
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